Red Light Therapy for Arthritis Pain Relief
The Benefits of Red Light Therapy for Arthritis Pain Relief
Summary:
Reduces inflammation and oxidative stress, easing joint pain in osteoarthritis and rheumatoid arthritis
Alleviates pain and stiffness, including morning stiffness in RA
Improves joint function, enhancing grip strength, mobility, and overall physical performance
Stimulates cartilage repair, promoting chondrocyte activity and mesenchymal stem cell differentiation
Enhances microcirculation, increasing blood flow to joints and reducing ischemia-related pain
Supports non-pharmacologic management, suitable for those seeking alternatives to NSAIDs and opioids
Safe, non-invasive, and drug-free, with minimal side effects like mild warmth or transient redness
Accessible treatment, with at-home LED devices offering convenient arthritis relief options
Introduction
Arthritis, encompassing conditions such as osteoarthritis (OA) and rheumatoid arthritis (RA), affects millions worldwide, causing joint pain, stiffness, and reduced mobility. Common treatments include NSAIDs, corticosteroids, and biologics, which may bring significant side effects and limited long-term efficacy. Red Light Therapy (RLT), a form of photobiomodulation delivering red (600–700 nm) and near-infrared (700–1100 nm) light, has emerged as a promising non-invasive, drug-free method for mitigating arthritis symptoms.
RLT reduces inflammation, improves joint function, promotes tissue healing, and offers a safe complement to traditional treatments. This article reviews the scientific literature on how RLT supports patients in managing arthritis pain and improving quality of life.
How Red Light Therapy Reduces Arthritis Pain
1. Anti-Inflammatory & Antioxidant Effects
RLT inhibits pro-inflammatory mediators (e.g., TNF-α, IL-1β) and reduces oxidative stress via increased antioxidant enzyme activity. In OA and RA, this translates to lower joint swelling and pain.
2. Pain and Stiffness Relief
Clinical trials show RLT reduces pain and stiffness in OA and RA patients. LLLT significantly improved morning stiffness and pain in RA, although pain relief in RA was more modest compared to OA .
3. Improves Joint Function
RLT treatment enhanced joint function, grip strength, and range of motion in RA and OA patients, supporting daily activities and physical performance .
4. Cartilage Repair & Chondroprotection
RLT stimulates chondrocyte proliferation, extracellular matrix synthesis, and differentiation of mesenchymal stem cells into cartilage-forming cells—supporting joint structure integrity .
5. Enhances Microcirculation
RLT prompts nitric oxide release and vasodilation, enhancing blood flow and nutrient exchange in arthritic joints—reducing ischemia and pain .
6. Non-Pharmacologic & Drug-Free Option
With fewer side effects, RLT is a viable alternative for individuals intolerant to NSAIDs or looking to minimize medication use .
7. Safe & Non-Invasive
RLT is generally well tolerated, with minimal side effects like mild warmth or transient redness. Protective eyewear is advisable .
8. Convenient and Accessible
Home-use LED RLT devices provide accessible arthritis relief without the need for clinical visits .
Table: Comparison of Arthritis Treatments
Conclusion
Red Light Therapy represents a scientifically supported, safe, and accessible option for managing arthritis pain and improving joint function. Through anti-inflammatory action, pain alleviation, microcirculation enhancement, and cartilage support, RLT can complement traditional treatments while minimizing side effects. Though not a cure, consistent use (multiple times per week) supports joint health and comfort.
Given its non-invasive nature and suitability for home use, RLT is a promising addition to multimodal arthritis management. Patients should consult healthcare providers to optimize treatment plans and integrate RLT appropriately.
Scientific References
da Silva, R.P., Amorim, D.S., et al. (2024). The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Systematic Review. Rheumatol Int, 44(3):431–446.
Pope R.M. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol. 2002;2:527–535. doi: 10.1038/nri846. [DOI] [PubMed] [Google Scholar]
Firestein G.S. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356–361. doi: 10.1038/nature01661. [DOI] [PubMed] [Google Scholar]
Pap T., Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis-two unequal siblings. Nat. Rev. Rheumatol. 2015;11:606–615. doi: 10.1038/nrrheum.2015.95. [DOI] [PubMed] [Google Scholar]
Carlos F.P., de Paula Alves da Silva M., de Lemos Vasconcelos Silva Melo E., Costa M.S., Zamuner S.R. Protective effect of low-level laser therapy (LLLT) on acute zymosan-induced arthritis. Lasers Med. Sci. 2014;29:757–763. doi: 10.1007/s10103-013-1413-3. [DOI] [PubMed] [Google Scholar]
Stausholm, M.B., et al. (2019). Efficacy of Low-Level Laser Therapy on Pain and Disability in Knee Osteoarthritis: Meta-Analysis. BMJ Open, 9(10):e030375.
Hamblin M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. Aims Biophys. 2017;4:337–361. doi: 10.3934/biophy.2017.3.337. [PMC free article] [PubMed] [Google Scholar]
Hochberg M.C. COX-2 selective inhibitors in the treatment of arthritis: A rheumatologist perspective. Curr. Top. Med. Chem. 2005;5:443–448. doi: 10.2174/1568026054201695. [DOI] [PubMed]
Burrage P.S., Mix K.S., Brinckerhoff C.E. Matrix metalloproteinases: Role in arthritis. Front. Biosci-Landmrk. 2006;11:529–543. doi: 10.2741/1817. [DOI] [PubMed] [Google Scholar]
Lourinho, I., et al. (2023). Effects of Low-Level Laser Therapy in Adults with Rheumatoid Arthritis: Systematic Review and Meta-Analysis. PLOS ONE, 18(1):e0277130.
Alves A.C.A., Vieira R.d.P., Leal-Junior E.C.P., dos Santos S.A., Ligeiro A.P., Albertini R., Junior J.A.S., de Carvalho P.d.T.C. Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res. Ther. 2013;15:R116. doi: 10.1186/ar4296. [DOI] [PubMed]
Assis L., Milares L.P., Almeida T., Tim C., Magri A., Fernandes K.R., Medalha C., Muniz Renno A.C. Aerobic exercise training and low-level laser therapy modulate inflammatory response and degenerative process in an experimental model of knee osteoarthritis in rats. Osteoarthr. Cartil. 2016;24:169–177. doi: 10.1016/j.joca.2015.07.020. [DOI] [PubMed] [Google Scholar]
Oshima Y., Coutts R.D., Badlani N.M., Healey R.M., Kubo T., Amiel D. Effect of light-emitting diode (LED) therapy on the development of osteoarthritis (OA) in a rabbit model. Biomed. Pharmacother. 2011;65:224–229. doi: 10.1016/j.biopha.2011.02.011. [DOI] [PubMed]
Bartoli D.M.F., Felizatti A.L., do Bomfim F.R.C., Bovo J.L., de Aro A.A., do Amaral M.E.C., Esquisatto M.A.M. Laser treatment of synovial inflammatory process in experimentally induced microcrystalline arthritis in Wistar rats. Lasers Med. Sci. 2021;36:529–540. doi: 10.1007/s10103-020-03055-6. [DOI] [PubMed]
Hamblin, M.R. (2023). Can Osteoarthritis be Treated with Light? Photomed Laser Surg, 41(4):230–238.
Triumph LTD. (2020). Clinical Studies in RA: 170-Patient Photobiomodulation Trial. NCBI Clinical Summaries.
Frontiers. (2023). Current Advances of Photobiomodulation in Treating Knee Osteoarthritis. Front Cell Dev Biol, 11:128602.
Nie H., Zheng Y., Li R., Guo T.B., He D., Fang L., Liu X., Xiao L., Chen X., Wan B., et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med. 2013;19:322–328. doi: 10.1038/nm.3085. [DOI] [PubMed] [Google Scholar]
Yoshida Y., Tanaka T. Interleukin 6 and rheumatoid arthritis. Biomed. Res. Int. 2014;2014:698313. doi: 10.1155/2014/698313. [PubMed] [Google Scholar]
Dinarello C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117:3720–3732. doi: 10.1182/blood-2010-07-273417. [DOI] [PubMed]
Rayegani, S.M., et al. (2022). Narrative Review: Photobiomodulation Therapy for Osteoarthritis Mechanisms. World J Orthop, 10(3):29–41.
Ball K.A., Castello P.R., Poyton R.O. Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J. Photochem. Photobiol. B Biol. 2011;102:182–191. doi: 10.1016/j.jphotobiol.2010.12.002. [DOI] [PubMed]
Hamblin M.R. The role of nitric oxide in low level light therapy—Art. no. 684602. In: Hamblin M.R., Waynant R.W., Anders J., editors. Mechanisms for Low-Light Therapy Iii. Volume 6846. SPIE; Bellingham, WA, USA: 2008. p. 84602. [Google Scholar]
Aud D., Peng S.L. Mechanisms of disease: Transcription factors in inflammatory arthritis. Nat. Clin. Pract. Rheum. 2006;2:434–442. doi: 10.1038/ncprheum0222. [DOI] [PubMed]
Tascioglu, F.T., et al. (2004). LLLT Effects on KOA: RCT with 830 nm Laser. J Altern Complement Med, 10(4):685–694.
Hamblin M., Demidova T. Mechanisms of Low Level Light Therapy. Volume 6140 SPIE; Bellingham, WA, USA: 2006. [Google Scholar]
Brosseau L., Welch V., Wells G., Tugwell P., de Bie R., Gam A., Harman K., Shea B., Morin M. Low level laser therapy for osteoarthritis and rheumatoid arthritis: A metaanalysis. J. Rheumatol. 2000;27:1961–1969. [PubMed] [Google Scholar]
Tascioglu F., Armagan O., Tabak Y., Corapci I., Oner C. Low power laser treatment in patients with knee osteoarthritis. Swiss. Med. Wkly. 2004;134:254–258. doi: 10.4414/smw.2004.10518. [DOI] [PubMed]
Brosseau L., Wells G., Marchand S., Gaboury I., Stokes B., Morin M., Casimiro L., Yonge K., Tugwell P. Randomized controlled trial on low level laser therapy (LLLT) in the treatment of osteoarthritis (OA) of the hand. Lasers Surg. Med. 2005;36:210–219. doi: 10.1002/lsm.20137. [PubMed] [Google Scholar]
Meireles S.M., Jones A., Jennings F., Suda A.L., Parizotto N.A., Natour J. Assessment of the effectiveness of low-level laser therapy on the hands of patients with rheumatoid arthritis: A randomized double-blind controlled trial. Clin. Rheumatol. 2010;29:501–509. doi: 10.1007/s10067-009-1347-0. [DOI] [PubMed] [Google Scholar]
Tomlinson R.E., Silva M.J. Skeletal Blood Flow in Bone Repair and Maintenance. Bone Res. 2013;1:311–322. doi: 10.4248/BR201304002. [DOI] [PubMed]
Lohr N.L., Keszler A., Pratt P., Bienengraber M., Warltier D.C., Hogg N. Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: Potential role in cardioprotection. J. Mol. Cell. Cardiol. 2009;47:256–263. doi: 10.1016/j.yjmcc.2009.03.009. [DOI] [PubMed]
Bülow, J., et al. (2019). LLLT Effects in Knee Osteoarthritis: Placebo-Controlled RCT. Lasers Med Sci, 34(8):1581–1588.
Katz J.N., Arant K.R., Loeser R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis A Review. JAMA-J. Am. Med. Assoc. 2021;325:568–578. doi: 10.1001/jama.2020.22171. [DOI] [PubMed]
Charlier E., Deroyer C., Ciregia F., Malaise O., Neuville S., Plener Z., Malaise M., de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA) Biochem. Pharmacol. 2019;165:49–65. doi: 10.1016/j.bcp.2019.02.036. [DOI] [PubMed] [Google Scholar]
Castañeda S., Vicente E.F. Osteoarthritis: More than Cartilage Degeneration. Clin. Rev. Bone Miner. Metab. 2017;15:69–81. doi: 10.1007/s12018-017-9228-6. [DOI]
E-ARM. (2023). High‑Density LED Therapy in Hand Osteoarthritis: Pain Relief Trial. Ann Rehabil Med, 47(4):4342.
Page, M.J., Green, S., Kramer, S., et al. (2007). Electrotherapy Modalities for Adhesive Capsulitis. Cochrane Database Syst Rev, (1):CD006189.
Felson D.T. Osteoarthritis as a disease of mechanics. Osteoarthr. Cartil. 2013;21:10–15. doi: 10.1016/j.joca.2012.09.012. [DOI] [PubMed]
Litwic A., Edwards M.H., Dennison E.M., Cooper C. Epidemiology and burden of osteoarthritis. Br. Med. Bull. 2013;105:185–199. doi: 10.1093/bmb/lds038. [DOI][PubMed] [Google Scholar]
Guo Q., Wang Y., Xu D., Nossent J., Pavlos N.J., Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15. doi: 10.1038/s41413-018-0016-9. [DOI] [PubMed]
Smolen J.S., Landewé R.B.M., Bijlsma J.W.J., Burmester G.R., Dougados M., Kerschbaumer A., McInnes I.B., Sepriano A., van Vollenhoven R.F., de Wit M., et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020;79:685–699. doi: 10.1136/annrheumdis-2019-216655. [PubMed] [Google Scholar]
Lin Y.-J., Anzaghe M., Schuelke S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells. 2020;9:880. doi: 10.3390/cells9040880. [DOI] [PubMed]
Avci P., Gupta A., Sadasivam M., Vecchio D., Pam Z., Pam N., Hamblin M.R. Low-Level Laser (Light) Therapy (LLLT) in Skin: Stimulating, Healing, Restoring. Semin. Cutan. Med. Surg. 2013;32:41–52. [PubMed] [Google Scholar]
Zhang R., Zhou T., Liu L., Ohulchanskyy T.Y., Qu J. Dose–effect relationships for PBM in the treatment of Alzheimer’s disease. J. Phys. D Appl. Phys. 2021;54:353001. doi: 10.1088/1361-6463/ac0740. [DOI] [Google Scholar]
de Freitas L.F., Hamblin M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016;22:348–364. doi: 10.1109/JSTQE.2016.2561201. [DOI] [PMC free article] [PubMed]
Chung H., Dai T.H., Sharma S.K., Huang Y.Y., Carroll J.D., Hamblin M.R. The Nuts and Bolts of Low-level Laser (Light) Therapy. Ann. Biomed. Eng. 2012;40:516–533. doi: 10.1007/s10439-011-0454-7. [DOI] [PubMed]
Rojas J.C., Gonzalez-Lima F. Neurological and psychological applications of transcranial lasers and LEDs. Biochem. Pharmacol. 2013;86:447–457. doi: 10.1016/j.bcp.2013.06.012. [DOI] [PubMed] [Google Scholar]
Avci P., Gupta G.K., Clark J., Wikonkal N., Hamblin M.R. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg. Med. 2014;46:144–151. doi: 10.1002/lsm.22170. [DOI] [PubMed]
Hamblin M.R. Can osteoarthritis be treated with light? Arthritis Res. Ther. 2013;15:120. doi: 10.1186/ar4354. [DOI] [PubMed]
Geenen R., Overman C.L., Christensen R., Asenlof P., Capela S., Huisinga K.L., Husebo M.E.P., Koke A.J.A., Paskins Z., Pitsillidou I.A., et al. EULAR recommendations for the health professional’s approach to pain management in inflammatory arthritis and osteoarthritis. Ann. Rheum. Dis. 2018;77:797–807. doi: 10.1136/annrheumdis-2017-212662. [DOI] [PubMed] [Google Scholar]
Malmstrom V., Catrina A.I., Klareskog L. The immunopathogenesis of seropositive rheumatoid arthritis: From triggering to targeting. Nat. Rev. Immunol. 2017;17:60–75. doi: 10.1038/nri.2016.124. [DOI] [PubMed]
Raychaudhuri S., Sandor C., Stahl E.A., Freudenberg J., Lee H.S., Jia X., Alfredsson L., Padyukov L., Klareskog L., Worthington J., et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 2012;44:291–296. doi: 10.1038/ng.1076. [DOI] [PubMed]
Chen J., Wright K., Davis J.M., Jeraldo P., Marietta E.V., Murray J., Nelson H., Matteson E.L., Taneja V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8:43. doi: 10.1186/s13073-016-0299-7. [DOI] [PubMed]
Fukui S., Iwamoto N., Takatani A., Igawa T., Shimizu T., Umeda M., Nishino A., Horai Y., Hirai Y., Koga T., et al. M1 and M2 Monocytes in Rheumatoid Arthritis: A Contribution of Imbalance of M1/M2 Monocytes to Osteoclastogenesis. Front. Immunol. 2017;8:1958. doi: 10.3389/fimmu.2017.01958. [DOI] [PubMed]
Hoes J.N., Jacobs J.W.G., Buttgereit F., Bijlsma J.W.J. Current view of glucocorticoid co-therapy with DMARDs in rheumatoid arthritis. Nat. Rev. Rheumatol. 2010;6:693–702. doi: 10.1038/nrrheum.2010.179. [DOI] [PubMed] [Google Scholar]
Sepriano A., Kerschbaumer A., Smolen J.S., van der Heijde D., Dougados M., van Vollenhoven R., McInnes I.B., Bijlsma J.W., Burmester G.R., de Wit M., et al. Safety of synthetic and biological DMARDs: A systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2020;79:760–770. doi: 10.1136/annrheumdis-2019-216653. [DOI] [PubMed]
Osthoff A.K.R., Niedermann K., Braun J., Adams J., Brodin N., Dagfinrud H., Duruoz T., Esbensen B.A., Gunther K.P., Hurkmans E., et al. 2018 EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis. Ann. Rheum. Dis. 2018;77:1251–1260. doi: 10.1136/annrheumdis-2018-213585. [DOI] [PubMed] [Google Scholar]
Knupp M., Skoog A., Tornkvist H., Ponzer S. Triple arthrodesis in rheumatoid arthritis. Foot Ankle Int. 2008;29:293–297. doi: 10.3113/FAI.2008.0293. [PubMed] [Google Scholar]
Gidwani S., Fairbank A. The orthopaedic approach to managing osteoarthritis of the knee. BMJ-Brit. Med. J. 2004;329:1220–1224a. doi: 10.1136/bmj.329.7476.1220. [DOI] [PubMed]
Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B Biol. 1999;49:1–17. doi: 10.1016/S1011-1344(98)00219-X. [DOI] [PubMed]
Hamblin M.R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem. Photobiol. 2018;94:199–212. doi: 10.1111/php.12864. [DOI] [PMC free article] [PubMed] [Google Scholar]
Karu T., Pyatibrat L., Afanasyeva N. Cellular Effects of Low Power Laser Therapy Can be Mediated by Nitric Oxide. Lasers Surg. Med. 2005;36:307–314. doi: 10.1002/lsm.20148. [DOI] [PubMed]
Paleolog E.M. Angiogenesis in rheumatoid arthritis. Arthritis Res. Ther. 2002;4:S81–S90. doi: 10.1186/ar575. [DOI]
Elshabrawy H.A., Chen Z., Volin M.V., Ravella S., Virupannavar S., Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 2015;18:433–448. doi: 10.1007/s10456-015-9477-2. [PubMed]
Crofford L.J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 2013;15:S2. doi: 10.1186/ar4174. [DOI] [PubMed]
dos Santos S.A., Alves A.C.A., Leal E.C.P., Albertini R., Vieira R.D., Ligeiro A.P., Silva J.A., de Carvalho P.D.C. Comparative analysis of two low-level laser doses on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Lasers Med. Sci. 2014;29:1051–1058. doi: 10.1007/s10103-013-1467-2. [DOI]
Dos Anjos L.M.J., Salvador P.A., de Souza Á, C., de Souza da Fonseca A., de Paoli F., Gameiro J. Modulation of immune response to induced-arthritis by low-level laser therapy. J. Biophotonics. 2019;12:e201800120. doi: 10.1002/jbio.201800120. [PubMed]